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Abstract. A tight-binding-type self-consistent band calculation is performed to study the 
magnetic properties of the ordered TPt (T = V, Cr, Mn, Fe, CO and Ni) alloys with CuAu 
structure within the Hartree-Fock approximation of the Hubbard model for their spin 
polarisation. Global features of their ground-state magnetic properties such as phase stability 
and local moments are explained successfully. The characteristic tetragonality of the lattice 
is argued from the calculated uniaxial pressures to be a consequence of the spin polarisation. 

1. Introduction 

Ordered alloys between a 3d transition element (T)  and a group-VIII4d or 5d element 
show a number of ordered structures, and their wide variety of magnetic properties has 
been observed from various viewpoints (see, e.g. Franse and Gersdorf 1986). One such 
system is TPt (T = V, Cr, Mn, Fe, CO and Ni) which has a tetragonal CuAuI-type 
crystal structure and whose magnetic ground state is paramagnetic in VPt and NiPt, 
ferromagnetic in FePt and Copt and antiferromagnetic in CrPt and MnPt. Such variation 
in the properties not only induces good motivation for elucidating the relevant mech- 
anism but also makes it suitable to study by a simple model such as the tight-binding (TB) 
model whereby the global trends of the electronic properties can be examined. 

A crystal of the TPt system is characterised by the layer structure where the layer 
consisting of T atoms and the layer consisting of Pt atoms accumulate alternately along 
the c axis of the tetragonal lattice. This is interesting because we can regard the system 
as a perfect ‘artificial’ layered superlattice which the molecular beam epitaxy (MBE) 
technique could produce. From this viewpoint a theoretical study of magnetism of the 
transition-metal monolayer on bulk Pd with FCC structure is being made (Blugel et a1 
1988). It is experimentally known that the magnetic moments in a TPt system are mainly 
associated with the layer consisting of T atoms and within each T-atom layer the local 
moments exhibit ferromagnetic (FePt and Copt) or antiferromagnetic (CrPt and MnPt) 
ordering (KrCn et a1 1968). The anomalously large moments on T atoms ( 4 . 3 , ~ ~  on a Mn 
atom in MnPt and 2 . 8 , ~ ~  on a Fe atom in FePt) are also noticeable. For the disordered 
phase of NiPt alloys, some electronic structure calculations (Staunton et a1 1983) and 
studies of magnetic properties (Parra and Medina 1980) have been carried out within 
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the magnetic environment model. No theoretical work based on the band calculation, 
however, has so far been done for the ordered alloy systems as far as we know. 

In this paper, we apply the TB method to the TPt system and explain the magnetic 
ground-state properties such as phase stability and local magnetic moments. The charac- 
teristic tetragonality of the lattice is also discussed. The TB calculation adopted here has 
been performed successfully to explain the magnetism of the Laves phase compounds 
(Yamada 1988), for example. This method has also been applied to TPt, systems, and 
the results will-be published elsewhere (Tohyama et a1 1988). 

In 9 2, we outline the method of calculation, and in § 3 we present the calculated 
results for the total energy, local moments, electronic specific heat coefficient and 
electronic uniaxial pressure and compare them with experiment. The conclusions are 
given in 0 4. 

2. Method of calculation 

We start from the Hubbard model whose Hamiltonian is expressed as a sum of the 
electron hopping term and the orbital-independent Coulomb repulsion term (see, e.g., 
Yamada and Shimizu 1985). The Hartree-Fock approximation of the Hamiltonian leads 
to a self-consistent band calculation for which we adopt the TB parametrisation scheme. 
No constraints for the magnetic structure are given in the self-consistent calculation 
besides the size of the unit cell. The Hamiltonian H to be diagonalised in k-space may 
then be written 

H f L ,  (k) = 2 exp(i k R )  H f L ,  ( R )  (1) 
R 

with 

where the energy integral H f L , ( R )  expresses the electron hopping between the Lth 
atomic orbital yll;(r - p l )  on the tth atom in the zeroth unit cell and the L'th atomic 
orbital q ; , ( r  - pt, - R )  on the t'th atom in the Rth unit cell. We adopt the two-centre 
approximation for H f L L '  ( R )  whereby all the integrals are written in terms of the hopping 
integrals such as ddo, ddn  and dd6 ford electrons and the on-site integrals representing 
the centres of gravity of the local bands (Slater and Koster 1954). The energy bands thus 
obtained provide the total and local densities of states (DOSS), magnetic energy, local 
moments, etc. 

Expressing the total electronic energy in terms of the covalent bond energy rather 
than the usual band energy, we can make a close link to the theory of metallic cohesion 
developed by Pettifor (1987). The total binding energy due to the cohesion may be 
obtained as a sum of this bond energy and the repulsive energy Erep. The covalent bond 
energy in the non-magnetic state EP may be written 

E P  = 1'' ( E  - VPi )2Npi (~ )  dE 
i 

(3 )  

where Npi(&) is the non-magnetic local DOS per spin on site i, VpI is the non-magnetic self- 
energy on site i (or the centre of the ith band) and E! is the non-magnetic Fermi energy 
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determined by the total number of electrons. In the spin-polarised state the total elec- 
tronic (or bond) energy E may be expressed as 

(4) E = EP + E m %  

where the magnetic contribution Emag may be written 

with 

The first term AT in ( 5 )  is the increase in the kinetic energy due to the spin polarisation 
where N,, (E)  is the i-site local DOS with spin C J ,  V I ,  is the i-site self-energy with spin CJ,  

and EL is the Fermi energy in the spin-polarised state. The second term in ( 5 )  is the 
energy gain due to exchange interaction where U, is the intra-atomic Coulomb integral 
on site i and m, is the number of polarised electrons on site i .  The last two terms in (5) 
are the correction coming from the charge transfer due to the spin polarisation where q, is 
the increment in electron number on site iwith the constraint of total charge conservation 
Z( q1 = 0.  All the terms are independent of the choice of the energy origin. 

We assume the hopping integrals to have the canonical form given by Pettifor (1977) 
and use the parameters for d-band mass and Wigner-Seitz radius listed by Andersen 
and Jepsen (1977) for elemental metals. The hopping integrals between different kinds 
of atom are assumed to be the geometrical means of the two hopping integrals between 
atoms of the same kind as is justified from the canonical band theory. All the hopping 
integrals are truncated midway between the second and third neighbours of the FCC 
lattice. Only the d orbitals are taken into account for simplicity because the sp electrons 
are not mainly responsible for the magnetism in d-band metals. The unit cell in the spin- 
polarised cases is taken to be the tetragonal one containing four independent atoms, 
whereas in the non-magnetic calculations we can use the smallest possible unit cell 
containing two independent atoms. The k-space integration in the self-consistent band 
calculation is made by the tetrahedron method (Rath and Freeman 1975), where we 
check the convergence to confirm that the 196 regular mesh points in the irreducible 
Brillouin zone are normally sufficient to obtain the total energy within an accuracy of 
1 mRyd. We use the values of parameters listed in table 1, where the values of the intra- 
atomic Coulomb integral U are, by definition, twice the values of I calculated by Janak 
(1977) within the local spin-density approximation, and the number n of d electrons on 
each atom is assumed to decrease from 9.4 for Ni metal to 3.9 for V metal keeping the 
same intervals of 1.1 electrons/atom. Such values of n are chosen not only because they 
are simple to use but because their variation is consistent with the values obtained 
(Papaconstantopoulos 1986) through the TB fits of the APW energy bands. For Pt, we 
simply assume n = 9.4 per atom and U = 46 mRyd. These values have often been used 
in the theory of transition-metal magnetism (Shimizu 1981). Fine adjustments of the 
parameters are not made here since we are interested in the general trends of magnetism 
in TPt systems. The lattice constants used for calculation are all experimental values 
except the value of c/a for CrPt for which we assume the ideal ratio c/a = 1 because no 
data are available. The computational procedures written above have been coded as a 
package program named TBPACK designing wide applications to any covalent-bonded 
periodic systems (Ohta 1987). 
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Table 1. Values of the parameters used for calculation. The number n of d electrons on each 
atom, the intra-atomic Coulomb integral U ,  the lattice constant a and c / a  for the unit cell 
containing four atoms are listed. 

Parameter 
(units) V Cr Mn Fe CO Ni Pt 

n (atom-') 3.9 5.0 6.1 7.2 8.3 9.4 9.4 
U(mRydatom) 52" 56" 60" 68" 72" 74" 469 
a (4 3.80gb 3.816' 4.00d 3.855' 3.803' 3.8227' - 
c l a  0.986b 1.09 0.91Sd 0.963' 0.975' 0.939* - 

a Janak (1977). 
Amamou and Kuentzler (1982) 
Besnus and Meyer (1973). 
Pal eta l  (1968). 

Pearson (1967). 
Assumption 

e Men'shikov etal(1974). 

3. Results of calculation 

The DOS curves illustrate the electronic structure of the system. In figure 1, we show the 
calculated total and local DOS curves of the TPt systems corresponding to the respective 
magnetic orderings observed experimentally. The Fermi level in the paramagnetic state 
lies somewhere around the large higher-energy peak of the DOS curves coming mainly 
from the electrons on T atoms. It is well known (see, e.g., Shimizu 1981) that the 
shape of the non-magnetic DOS curve around the Fermi level substantially explains the 
magnetism of the system. In the present cases the Fermi level goes over the large peak 
of the local DOS of T atoms on an increase in the number of electrons on T atoms (or 
from V to Ni), exhibiting in order paramagnetism, antiferromagnetism, ferromagnetism 
and again paramagnetism. The local DOS curves for the spin-polarised states indicate 
that the local DOS of T atoms polarises very strongly while that of Pt atoms shows quite 
a small spin polarisation. This explains the anomalously large local moments on T atoms 
in MnPt and FePt alloys. The charge flows q1 due to spin polarisation should be noted; 
their direction is usually from a T atom to a Pt atom, but their magnitudes are fairly small 
(at most 0.3 electrons/atom) and thus no large qualitative alterations may be expected 
to the integrated magnetic properties of the system such as the local moments and total 
energy although the non-integrated quantities relating to the height of the DOS at the 
Fermi level can change considerably. We can compare the DOS curve for ordered NiPt 
(see figure l(f)) with that for disordered NiPt obtained (Staunton etal 1983) by the KKR 
CPA method; it should be pointed out that the curves are very similar to each other. 

The total energies are calculated for the paramagnetic, ferromagnetic and anti- 
ferromagnetic states of each alloy, and the results are given in figure 2. Stable and/or 
metastable magnetic orderings are found for all the alloys except NiPt where only the 
paramagnetic state is stable. No ferromagnetic solution is found for VPt. The most stable 
magnetic states are obtained by comparing the total energy as shown in table 2. The 
experimental sequence paramagnetic, antiferromagnetic, ferromagnetic and para- 
magnetic running from VPt to NiPt along the series is reproduced successfully except 
for a small difference in VPt where the energy of the antiferromagnetic state is a little 
lower than the energy of the paramagnetic state. In MnPt the ferromagnetic state has 
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Figure 1. The total and local DOS curves calculated for the experimental magnetic orderings 
(the unit cell contains four atoms): - , total DOS; --, --- , DOS on T site; 
. . . . _-_ , DOS on Pt site. The results for (a )  VPt (paramagnetic), ( b )  CrPt (anti- 
ferromagnetic), (c) MnPt (antiferromagnetic), (d )  FePt (ferromagnetic), ( e )  Copt (ferro- 
magnetic) and (f) NiPt (paramagnetic) are shown. The vertical lines indicate the Fermi 
levels. 
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Figure 2. (a )  The total electronic energy E and ( b )  
the magnetic energy Emag for the paramagnetic 
(01, ferromagnetic (0) and antiferromagnetic 
( A )  states of TPt (T = V, Cr, Mn, Fe, CO and Ni) 
ordered alloys. 

Table 2. The stable magnetic order, local magnetic moments mT and mpl and total electronic 
energies E:  P,  paramagnetic; AF, antiferromagnetic: F, ferromagnetic. 

Parameter (units) VPt CrPt MnPt FePt Copt NiPt 

Experiment P ri A F ~  AF' Fd F' P' 

mr  (PB) 0 2.24 4.3 2.8 1.6 0 
mPt 0 small 0 -0.25g 0.25 0 

Theory AF AF F E A F  F F P 

Paramagnetic 
EP (Ryd Fu-') -0.755 -0.585 -0.447 -0.381 -0.293 -0.196 

Ferromagnetic 
E ( R y d ~ u - ' )  - -0.639 -0.569 -0.465 -0.324 - 
mT 

m P ~  (PB) 
- 4.21 4.17 3.09 1.93 0 
- 0.20 0.32 0.30 0.34 0 

Antiferromagnetic 
E (Ryd F U - I )  -0.765 -0.682 -0.566 -0.436 -0.303 - 
mT (PB) 2.13 3.96 4.00 2.87 1.64 0 
mpt (PB) 0.03 0.04 0.04 0.06 0.07 0 

a Bieber e ta /  (1980). 
Pickart and Nathans (1963). 
Krkn et al(1968) and Pa1 et al(1968). 
Kelarev et a1 (1973). 

e Franse and Gersdorf (1986). 
' Cadeville et al(1986). 
8 Hypothetical value of Men'shikov et a1 (1974). 
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Figure 3. The local magnetic moments for ferro- 
magnetic (0) and antiferromagnetic ( A )  states of 
TPt ( T = V ,  Cr,  Mn. Fe,  CO and Ni) ordered 
alloys, whichiscompared withexperiment (0) (a) 

- I L \  P for T sites and ( b )  for Pt sites. The paramagnetic 
1 states (0) are also indicated for VPt and NiPt. 

The calculated points of the local moments cor- 

m ID1 
1 
I 3 

I 
I 

I d  1 
responding to the experimental magnetic phases 

v Cr Mn Fe C O  N I  are connected together using bold lines. 

almost the same energy as the antiferromagnetic state. The calculation for the alloys 
with a hypothetical cubic lattice ( c / u  = 1 with the volume preserved) produces no 
qualitative differences in the total energies. 

The calculated local magnetic moments on each atom are shown in figure 3 and table 
2. The global features, i.e. the large moments on T atoms which show a maximum in the 
middle of the series and the small moments on Pt atoms, are reproduced satisfactorily. 
The large local moments on the Mn atom in MnPt are the results of the large exchange 
splitting of the local bands. We note the largest discrepancy at CrPt in figure 3. It is 
known that the magnetic properties of the Cr-Pt systems are very sensitive to the state 
of atomic order (Goto 1977). For example, the mc,-value of 2 . 3 3 ~ ~  measured for CrPt, 
(Pickart and Nathans 1963) has been updated to the larger value of 3.37PB by the new 
experiment of Burke et a1 (1980). Thus, the mc,-value of 2.24 pB for CrPt measured by 
Pickart and Nathans (1963) might possibly be unreliable. We cannot exclude, however, 
the possibility that our theory estimates too large an mc,-value because the method that 
we adopt may be justified only for obtaining a qualitative estimation of the magnetism. 
The antiferromagnetic structures of CrPt and MnPt on T-atom layers are in agreement 
with experiment (Pickart and Nathans 1963, Pal et a1 1968) although the present cal- 
culation does not provide the directions of the moment vectors. The moments on Pt- 
atom layers, although they are very small, show antiferromagnetic ordering as well. For 
FePt, Men’shikov et ul (1974) suggests hypothetically from experiment that the small 
moments on Pt atoms are antiparallel to the large Fe moments (ferrimagnetism), but 
our result indicates that they are parallel to each other although the moments on the Pt 
atom are very small. For disordered NiPt alloys, both experiment (Alberts et a1 1974) 
and theory (Parra and Medina 1980) show the existence of local moments. For the 
ordered NiPt alloy, however, our calculation clearly indicates that only the paramagnetic 
solution is stable and this is consistent with the recent careful experiment of Cadeville et 
a1 (1986). We may thus conclude that the local moments in the NiPt system are induced 
by the effect of disorder. To determine the effect of the tetragonality on the magnetic 
properties, we examine the changes in the local magnetic moments by assuming a cubic 
lattice (c/u = 1 with the volumes preserved) for all the alloys. It is found that the changes 
are at most 0 . 0 5 ~ ~  on any atoms and thus unnoticeably small. 

The electronic specific heat coefficient y is calculated and compared with experiment 
(Kuentzler 1981) in figure 4. Although the orders of magnitude are reproduced satis- 
factorily, precise agreement is not obtained. To achieve better agreement with exper- 
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1 I 1 

Cr Mn Fe C O  NI 
Figure 4. The electronic specific heat coefficients 
for paramagnetic (0), ferromagnetic (El) and 
antiferromagnetic (A)  states of TPt (T = V, Cr, 
Mn, Fe, CO and Ni) ordered alloys compared 
with experiment (0). The calculated points of the 
coefficients corresponding to the experimental 
magnetic structures are connected together using 
bold lines. 

1 0 7 -  I I 

i9 

I 1  , 1 

v Cr M n  Fe CO N I  

Figure 5. (a) The estimated electronic uniaxial 
pressure for non-magnetic (0) and spin-polarised 
(U) states of TPt (T = V, Cr, Mn, Fe, CO and Ni) 
ordered alloys. The magnetic contribution tmnE 

is also shown (0). The experimental magnetic 
orderings are assumed for each alloy. ( b )  The 
experimental c/a ratios (0) compared with the 
ratios obtained from the hard-sphere-packing 
model ( X )  and the pair-potential model (A) .  

iment, we need fine adjustments of the parameters II and U as well as the inclusion of 
the phonon (and other) enhancements, because non-integrated quantities such as y 
reflect the sharp oscillations of the DOS curve directly. 

The tetragonality c/a of the lattice has the characteristic alloy dependence that the 
ratio c/a is always smaller than unity and shows an oscillation as seen in figure 5 .  We 
now consider this tetragonality. The hard-sphere-packing model readily explains the 
reason for c/a < 1 from mismatch of the sizes of T and Pt atoms. The results may be seen 
in figure 5(b) where we assume that the atomic volumes of pure metals represents the 
sizes of the elements. The values of c/a thus obtained are, however, generally too small 
except for MnPt. The pair-potential model improves these values of c/a because the 
softness of the spheres is taken into account. We adopt here the form q ( r )  = Lyr-" - /3r-5 
with the inter-nuclear separation r .  This particular power-law dependence is chosen on 
the basis of the theory of d-band cohesion (Pettifor 1983). The two positive coefficients 

and /3 are determined to reproduce the atomic volumes and bulk moduli of the 
elemental metals. The coefficients between different kinds of atom are assumed to be 
the geometrical means of the coefficients for corresponding pure metals. The distortion 
of the lattice is calculated by minimising the total energy with respect to a and c. The 
results obtained are also shown in figure 5(b) ,  with the characteristic oscillation observed 
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experimentally being left unexplained. To explain the oscillation, we consider the 
quantum mechanical behaviour of the electrons to be essential. Thus the electronic part 
of the uniaxial pressure for the hypothetical cubic state (c /a  = 1 with the volume V 
preserved) is estimated from the computed difference between the total electronic 
energy E at c/a = 0.95 and at c /a  = 1.05 as t = -V-' A E / A ( c / a )  where we assume the 
experimental magnetic orderings. We can thus expect a smaller c /a  if t is small. The 
results obtained are shown in figure 5(a), where tmag is obtained by subtracting t for the 
non-magnetic state from that for the spin-polarised state (see equation (4)). It is clear 
that t in the non-magnetic state shows no correlation with the experimental c/a but that 
the magnetic contribution Pageexhibits a characteristic alloy dependence which correlates 
very well with experiment. The order of magnitude of tmag, about 0.01 Mbar, is also 
sufficient to explain the few per cent distortion of the lattice provided that the relevant 
tetragonal elastic constant has the standard value, about 1 Mbar, of transition metals. 
We may therefore conclude that the spin polarisation is responsible for the characteristic 
tetragonality of the system. For quantitative arguments, we need to relax the lattice by 
taking into account both electronic and repulsive terms using, for example, the TB bond 
model (Ohta et a1 1987). 

4. Conclusions 

In this paper, we have performed the TB-type self-consistent band calculation for the 
ordered TPt alloys with CuAuI structure and have investigated the magnetic properties 
of these alloys. The global features of their ground-state magnetic properties such as the 
magnetic phase stability and the local moments have been explained successfully. The 
characteristic tetragonality of the lattice has also been examined through the calculated 
uniaxial pressures and it has been concluded that the spin polarisation is responsible for 
its oscillatory variation along the series. 

To make more quantitative calculations within the TB framework, we need to include 
the s-d hybridisation and spin-orbit coupling in the band calculation and to take into 
account the full-orbit exchange interactions in the Hamiltonian (Yamada and Shimizu 
1987). 

The TB parametrisation method employed in this paper will be used conveniently to 
assess the global trends of the electronic properties, to study very complex systems where 
the first-principles band calculation is too elaborate to perform, or to make an instant 
calculation as a preliminary work of the fully consolidated quantitative calculations. 
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